Назад
Всегда рады ответить на все ваши вопросы
materials@ostec-group.ru

Изделия на основе керамики

Для создания изделий из керамики по толстоплёночной технологии используют специальные пасты и сеткотрафареты. К толстоплёночной технологии также относится низкотемпературная совместно спекаемая керамика (LTCC), где в качестве основы используют сырые керамические листы.

Основными материалами для производства многослойных печатных плат традиционно являлись органические материалы с низкими значениями диэлектрической проницаемости (FR-4, εr = 3,5 - 4,5) и керамика с высокими значениями диэлектрической проницаемости (εr = 10 - 12). Увеличение рабочих частот электронных приборов требовало создания нового материала, который бы, с одной стороны, позволял легко создавать многослойные печатные платы, и, с другой стороны, на высоких частотах имел бы характеристики, схожие с керамикой. Новый материал получил название «низкотемпературная совместно обжигаемая керамика» (Low Temperature Cofired Ceramic (LTCC)).

Многослойные керамические платы первоначально изготавливались из оксида алюминия Al2O3 (High Temperature Cofired Ceramic — HTCC-технология). Данный материал обжигался при высоких температурах (Т ≥1500°C), поэтому слои металлизации выполнялись только из тугоплавких металлов: вольфрама и молибдена. Это вносило ряд ограничений в функциональные возможности приборов, в усовершенствование технологии и снижение стоимости производства.

Своё дальнейшее развитие многослойная керамика получила с внедрением технологии LTCC, когда керамику начали смешивать со специальными стеклами . Температура обжига керамики снизилась до 850°С, что привело к существенному упрощению производственного процесса. В настоящее время к технологии LTCC относят керамику, обжигаемую при температурах ниже 1000°C.

Низкие потери СВЧ и относительно невысокая стоимость производства являются ключевыми преимуществами LTCC-технологии для ВЧ- и СВЧ-приборов. По стоимости LTCC-технология приближается к технологии изготовления печатных плат на основе FR-4, а по своим диэлектрическим характеристикам низкотемпературная керамика сопоставима с алюмооксидной керамикой.

Основные преимущества и применение-LTCC технологии

Основные преимущества и особенности LTCC-технологии:
  • Очень хорошие электрические характеристики и стабильность до миллиметровых длин волн. В зависимости от используемых материалов диэлектрическая проницаемость низкотемпературной керамики варьируется от 6 до 9, а тангенс угла диэлектрических потерь от 0,001 до 0,006 в гигагерцовом диапазоне. В качестве металлизации используются металлы с низким удельным сопротивлением (Ag, Au, Pt).
  • Превосходная механическая стабильность и сохранение линейных размеров. Это преимущество возникает не только из-за малого коэффициента теплового расширения (5-7 мкм/мС), но и из-за эластичных свойств в широком диапазоне температур.
  • Низкий КТР. КТР низкотемпературной керамики близок к КТР основных полупроводниковых материалов электроники (Si, GaAs, InP). Это позволяет монтировать полупроводниковые кристаллы непосредственно на основание платы.
  • Хорошая теплопроводность. Теплопроводность LTCC-керамики составляет 2-4 Вт/мК, что гораздо выше, чем у печатных плат на основе органических материалов (0,1-0,5 Вт/мК). Теплопроводность LTCC также может быть улучшена за счёт создания тепловых стоков с помощью металлизации (до 20 Вт/мК).
  • Возможность 3D-интеграции. Можно легко создавать полости, отверстия, ограничители, встроенные пассивные компоненты.
  • Герметичность и возможность высокотемпературной пайки. Плотная структура LTCC-керамики не пропускает влагу, поэтому корпуса из керамики могут быть использованы в атмосфере с высокой влажностью без дополнительной защиты. Также LTCC-материалы в отличие от органических сохраняют свои свойства во влажной среде (бОльшая часть органических материалов сильно подвержена влиянию влаги).
В дополнение к этому технология LTCC доказала свою надёжность и экономическую эффективность в широком спектре задач СВЧ-электроники. Благодаря всем вышеперечисленным особенностям, LTCC-технология нашла широкое применение в создании многослойных плат для высокочастотных электронных приборов, корпусов микросхем и выступает в качестве альтернативы многослойным печатным платам из стеклотекстолита и высокотемпературной керамики.

Микросхемы с корпусами на основе низкотемпературной совместно обжигаемой керамики успешно применяются в автомобильной, потребительской электронике, телекоммуникациях, спутниковых системах и в военных изделиях. Миллионы устройств уже созданы на основе LTCC-технологии и функционируют в настоящее время.

Изначально LTCC-технология использовалась для крупносерийного производства СВЧ-устройств. Но благодаря своим диэлектрическим и механическим свойствам, а также надёжности и стабильности, низкотемпературная керамика начала активно применяться и для производства различных сенсоров, механических систем (МЭМС-устройств) и трёхмерных интегрированных структур.

Технология производства LTCC

Процесс производства изделий из LTCC-керамики начинается с создания керамической суспензии путём смешивания керамического порошка, органических связующих, растворителей и модифицирующих добавок. Из суспензии впоследствии формируется керамическая лента. Лента нарезается на листы необходимых размеров в соответствии с имеющимся оборудованием. Затем производится формирование переходных отверстий, заполнение переходных отверстий проводящей пастой и формирование топологии с помощью специальных проводящих и резистивных паст. Керамические листы совмещаются, ламинируются, разрезаются на отдельные элементы и обжигаются. Процесс термообработки керамики, как правило, состоит из этапа изостатического ламинирования при температурах 60-70 °С под давлением, этапа выжигания органики при температурах 450-500 °С в течение 2-2,5 часов, затем следует обжиг при температуре 850 °С в течение 10 минут.

Низкие температуры обжига позволяют использовать металлы с низким удельным сопротивлением (золото, серебро). Это является одним из ключевых преимуществ LTCC-технологии, поскольку позволяет существенно снизить стоимость создания многослойной керамической структуры и улучшить характеристики. Использование серебра снижает электрическое сопротивление проводящих слоёв, а окислительная атмосфера (воздух) даёт возможность совместно применять оксидную керамику с высоким коэффициентом диэлектрической проницаемости.

После обжига LTCC-керамика сохраняет свою структуру даже при воздействии высоких температур. Это позволяет создавать устройства, работающие в широком диапазоне температур. Керамика во время обжига становится более плотной и, как правило, даёт усадку в размерах на 9-15 % в плоскости листов (ось X, Y) и на 10-30 % в направлении, перпендикулярном плоскости листов (ось Z). Это необходимо учитывать как при проектировании систем на основе LTCC, так и при выборе проводящих/резистивных паст. Пасты должны иметь коэффициент усадки, схожий со значениями для керамических листов.

Основными материалами, необходимыми для производства LTCC-изделий, являются керамические порошки, специальные добавки, готовые керамические листы, а также пасты для создания проводников и встроенных пассивных компонентов. Все эти материалы объединяются в специальные LTCC-системы, в которых каждый компонент создан с учётом обеспечения химической и физической совместимости с другими элементами. Создание LTCC-системы – сложный наукоёмкий процесс, требующий существенных инвестиций. Поэтому, как правило, каждая LTCC-система представляет собой уникальное решение, и заменить один из его компонентов материалом другого производителя не представляется возможным.

Керамические листы

Керамические листы, сформированные из керамической суспензии, являются базовым материалом для производства изделий СВЧ-электроники. От качества керамических листов зависят стабильность и повторяемость параметров технологического процесса производства LTCC-устройств. Кроме того, характеристики керамических листов определяют функциональные возможности устройств, работающих на высоких частотах. Низкотемпературная керамика создаётся на основе кристаллизированного стекла или смеси стекла и керамики (Al2O3, Si2O3, PbO и т.д.). Свойства керамической ленты могут быть модифицированы добавками с различными электрическими и физическими свойствами (пьезоэлектрики, ферроэлектрики и т.д.) в зависимости от решаемой задачи. Коэффициент теплового расширения может быть подобран для согласования с алюмооксидной керамикой, кремнием или арсенидом галлия.

LTCC-керамика сохраняет свои характеристики в широком спектре частот и очень хорошо подходит для применения в высокочастотной технике. Материал керамики демонстрирует стабильность коэффициента диэлектрической проницаемости k и диэлектрических потерь.

Некоторые производители комбинируют в одном процессе материалы с низким значением диэлектрической проницаемости k и материалы с высокими значениями k. Это даёт возможность создавать внутренние конденсаторы высокой ёмкости, позволяя уменьшать размеры GaAs СВЧ-микросхем.

Низкотемпературная совместно обжигаемая керамика продолжает совершенствоваться как в области технологических параметров, так и в области физических и электрических характеристик.

Пасты

Проводники, совместимые с низкотемпературной керамикой, являются важнейшей частью LTCC-систем. Металлизация может быть создана на основе золота, серебра или их совместного использования (серебряные пасты для формирования внутренних проводников, золотые для поверхности). Проводящие пасты легко наносятся методом трафаретной печати и дают возможность получать топологию с высоким разрешением. При совместном обжиге важными параметрами LTCC-металлизации являются усадка и тепловое расширение материалов. Они должны быть сопоставимы с параметрами для используемой керамики. Помимо этого, пасты для металлизации должны быть химически совместимы с материалом низкотемпературной керамики. Крупные производители, как правило, предлагают комплексные LTCC-системы, в которых керамические материалы и проводящие/резистивные пасты подобраны для получения полной совместимости.

Низкие потери СВЧ являются особенностью LTCC-систем. Проведенные исследования показали, что потери, связанные с проводниками, становятся сравнимыми с потерями в диэлектриках при частотах свыше 1 ГГц. Это необходимо учитывать при проектировании устройств и выборе системы LTCC-материалов (керамика + проводящие пасты). Потери в проводниках ограничены не только внутренним удельным сопротивлением, но и природой органической связки в пастах, геометрией и шероховатостью поверхности проводящих дорожек. Проводники на основе золота имеют более высокие потери, чем проводники на основе серебра, поскольку золото обладает бОльшим удельным электрическим сопротивлением (2,3 Ом-см у золота против 1,6 Ом-см у серебра). Очевидно, что переход на проводящие материалы на основе серебра не только снижает потери, но и уменьшает стоимость LTCC-системы.

Однако когда надёжность и использование проволочной микросварки являются основными критериями выбора технологии, проводники на основе золота более предпочтительны. Смешанные системы металлизации совмещают в себе достоинства золотых и серебряных проводников. В таких системах золото используется для создания поверхностных проводников, а серебро – для внутренних. Переход между двумя металлами осуществляется с помощью специальных паст, предотвращающих возникновение эффекта Киркендаля (взаимной диффузии атомов золота и серебра). Таким образом, система смешанной металлизации позволяет создавать относительно недорогие устройства с высоким быстродействием.

Компании производители LTCC-материалов предлагают широкий спектр материалов для создания резисторов и конденсаторов, встроенных в многослойную керамическую плату. Резистивные пасты позволяют создавать встроенные резисторы с сопротивлением от 10 до 10000 Ом/квадрат с допусками ±10 % и температурными коэффициентом сопротивления ±200 х 10-6C-1. Параэлектрические и сегнетоэлектрические материалы доступны с диэлектрической проницаемостью от 5 до 2000, с минимально возможной толщиной нанесения 10 мкм, но не всегда удаётся обеспечить химическую совместимость материалов паст и керамики.

Развитие резистивных и диэлектрических материалов продолжается в направлении создания резисторов с высоким значением сопротивления, с более высокими допусками и низким значением температурного коэффициента сопротивления. Также производители материалов для LTCC-технологии стремятся создать химически совместимые диэлектрики с высокими значениями диэлектрической постоянной.

Материалы Ferro для LTCC-технологии

Компания Ferro получила широкую известность среди разработчиков и производителей СВЧ-электроники благодаря высоким техническим характеристикам, надёжности и качеству материалов для LTCC-технологии.

Низкотемпературная совместно обжигаемая керамика Ferro более 20 лет присутствует на рынке СВЧ-электроники. Она активно применяется ведущими производителями для создания компонентов радарных систем, антенн, фильтров и телекоммуникационных изделий. Постоянные глубокие исследования в области материалов для электроники позволяют компании Ferro занимать лидирующие позиции на рынке. LTCC-системы включают в себя полный спектр материалов. Среди них керамический порошок, керамические ленты и листы, пасты для создания внутренних и внешних проводников, пасты для металлизации переходных отверстий, пасты для создания встроенных резисторов. Керамические материалы и металлические пасты подобраны с учётом полного согласования материалов.

Основные решения Ferro для LTCC-технологии представлены тремя основными системами материалов:

  • Система A6-M: основной компонент LTCC-керамики Ferro. Запатентованный стеклокерамический материал для высокочастотных приборов (до 110 ГГц) с низким значением вносимых потерь. Данная LTCC-система создана для изделий с повышенными требованиями к надёжности. Поставляется в виде керамической ленты. Металлизация на основе золота.
  • Система A6-S: альтернатива A6-M для СВЧ-изделий. A6-S создана на основе запатентованного кальциевого боросиликатного стекла для недорогих СВЧ-устройств, работающих в диапазоне от 2,45 до 100 ГГц. LTCC-система на основе смешанной металлизации (золото + серебро). Поставляется в виде керамической ленты или порошка.
  • Система L8: бюджетная альтернатива LTCC-системе A6. Стеклокерамический материал для модулей, корпусов, подложек и сложных LTCC-компонентов. Стабильное значение K и малые потери до 30 ГГц. Используется для создания низкочастотных и среднечастотных приборов для телекоммуникации, радарных систем, авионики, спутниковой техники и других задач. Поставляется в виде керамической ленты или порошка. Система совместима с золотой, серебряной и смешанными металлизациями, специально созданными для данной системы.

Основными преимуществами металлических паст Ferro, созданных для различных типов керамики, являются высокие характеристики и полная технологическая совместимость с керамическими листами. Металлические пасты Ferro отличаются высокой адгезией к керамическому основанию, соответствием КТР и коэффициентов усадки аналогичным параметрам керамических листов, низким удельным сопротивлением и стабильностью электрических характеристик. При термообработке в металлизации не образуются поры и пустоты. Металлизация для переходных отверстий позволяет создавать качественное соединение металлов разных уровней и не вызывает образования трещин в материале керамики. Поверхностная металлизация отличается высоким качеством поверхности, что позволяет в дальнейшем, в зависимости от задачи, осуществлять качественную пайку или сварку проволочных или ленточных выводов.