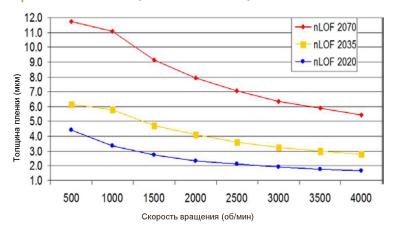


Лист технической информации

Серия AZ® nLOF™ 2000


Негативные фоторезисты для однослойной взрывной литографии

Применение

Фоторезисты серии AZ® nLOF™ 2000 для і-линии разработаны для упрощения исторически сложных процессов обращения изображения и многослойной взрывной литографии. Идеальные топологические профили в рамках взрывной литографии достигаются при использовании стандартного технологического процесса: экспонирование / термообработка после экспонирования / проявление. Фоторезисты этой серии работают очень быстро, а отпечатанные элементы термостабильны до > 200 °C.

- Совместимость с ТМАГ-проявителями
- Толщина одного слоя от 2,0 до > 10 мкм
- Может обрабатываться с вертикальными стенками для реактивно-ионного травления (РИТ)

Кривые нанесения (силикон 150 мм)

Типичный процесс

Сушка: 110 °C / 60-90 с

Выдержка для регидратации: Нет

Экспонирование: 365 нм (светочувствительность)

Термообработка после экспонирования:

110 °C / 60 c

Проявление: Ванночка, распыление или

погружение

Тип проявителя: безметалльный

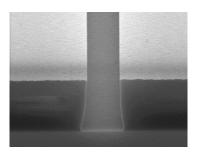
* Термообработка после экспонирования требуется для правильной визуализации

Оптические константы*

Коши А	1,5946
Коши В (мкм²)	0,01188
Коши С (мкм ⁴)	0,00028
п при 633 нм	1,626
k при 633 нм	0

* Не подвергнутая экспонированию пленка фоторезиста


Сопутствующие продукты

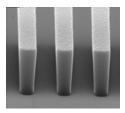

<u>Разбавление / удаление натеков на кромках</u> Растворитель AZ® EBR или AZ® EBR 70/30 MIF Проявители

AZ® 300MIF, AZ® 726MIF, AZ® 917MIF

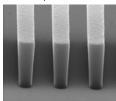
Сниматели

AZ® 400T, AZ Remover 770

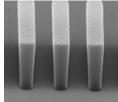
Линии 2,0 мкм и изолированные линии 2,0 мкм Слой AZ nLOF 2035 толщиной 3,5 мкм Экспонирование с помощью і-линии 72 мДж/см² Проявление AZ 300 MIF (120 c)

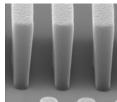


Пример процесса (пленка толщиной 2,0 мкм на кремниевой подложке)

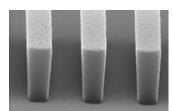

Этап процесса	Параметры
Праймер	ГМДС 140 °C / 60 c (пар)
Покрытие	Пленка AZ nLOF 2020 (33 сП) толщиной 2,0 мкм на кремниевой подложке без покрытия
Сушка	110 °C, 60 секунд, прямой контакт, горячая плита
Экспонирование	i-линия, 66 мДж/см ² * ном., степпер Nikon (0,54 NA)*
Термообработка после экспонирования	110°C*, 60 секунд, прямой контакт, горячая плита
Проявление	AZ 300MIF, 60 с, одиночное проявление под слоем жидкости

* Топологические профили можно изменить, варьируя дозу экспонирования и температуру термообработки после экспонирования. См. дополнительную информацию в матрице оптимизации профиля.

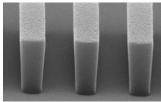

Разрешение при 66 мДж/см²


0,95 мкм

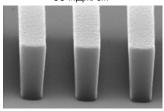
0,85 мкм

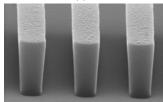


0,80 мкм

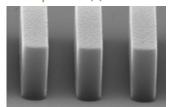


0,70 мкм

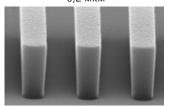

Линии 1,0 мкм Сквозная доза


62 мДж/см²

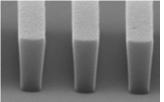
66 мДж/см²

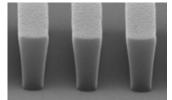


70 мДж/см²



74 мДж/см²

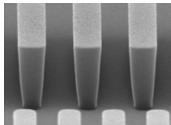

Линии 1,0 мкм Глубина фокусировки при 66 мДж/см²


-0,2 мкм

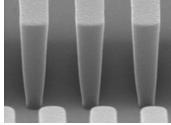
0,2 мкм

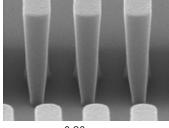
0,6 мкм

1,0 мкм

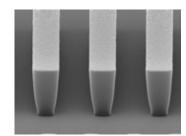

Пример процесса (пленка толщиной 3,5 мкм на кремниевой подложке)

Этап процесса	Параметры
Праймер	ГМДС 140 °C / 60 c (пар)
Покрытие	Пленка AZ nLOF 2035 (79 сП) толщиной 3,5 мкм на кремниевой подложке без покрытия
Сушка	110°C, 60 с, прямой контакт, горячая плита
Выдержка при сушке после проявления	Нет
Экспонирование	i-линия, 80 мДж/см² ном., степпер Nikon (0,548 NA)*
Термообработка после экспонирования	110°C*, 60 секунд, прямой контакт, горячая плита
Проявление	AZ 300MIF, 120 с, одиночное проявление под слоем жидкости

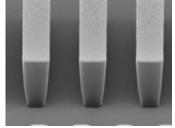

^{*} Топологические профили можно изменить, варьируя дозу экспонирования и температуру термообработки после экспонирования. См. дополнительную информацию в матрице оптимизации профиля.


2,00 мкм

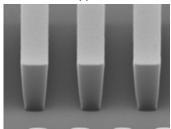
1,50 мкм

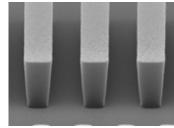


1.10 мкм

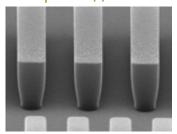


0,90 мкм

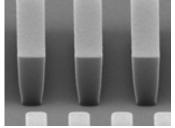

Линии 2,0 мкм Сквозная доза


72 мДж/см²

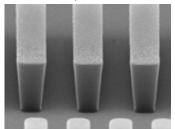
80 мДж/см²

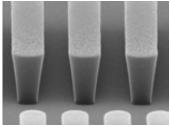


88 мДж/см²



96 мДж/см²

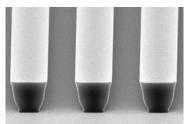

Линии 2,0 мкм Глубина фокусировки при 80 мДж/см²

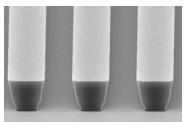

-1,0 мкм

0,0 мкм

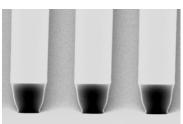
1,0 мкм

1,8 мкм




Пример процесса (пленка толщиной 7,0 мкм на кремниевой подложке)

Этап процесса	Параметры
Праймер	ГМДС 140 °C / 60 c (пар)
Покрытие	Пленка AZ nLOF 2070 (330 сП) толщиной 7,0 мкм на кремниевой подложке без покрытия
Сушка	110 °C, 90 с, прямой контакт, горячая плита
Выдержка при сушке после проявления	Нет
Экспонирование	i-линия, различные дозы, степпер Nikon (0,54 NA)
Термообработка после экспонирования	110 °C, 90 секунд, прямой контакт, горячая плита
Проявление	AZ 300MIF, 2 x 60 секунд, ванночки


Контролируемый размер низа в сравнении с дозой экспонирования (контролируемый размер на шаблоне = линии с малым зазором 7,0 мкм)

Доза: 174 мДж/см² Контролируемый размер низа: 4,45 мкм

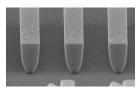
Доза: 186 мДж/см² Контролируемый размер низа: 4,84 мкм

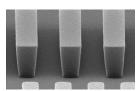
Доза: 198 мДж/см² Контролируемый размер низа: 5,31 мкм

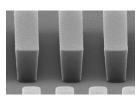
Пример чувствительности после термообработки после экспонирования (пленка толщиной 3,5 мкм на кремниевой подложке)

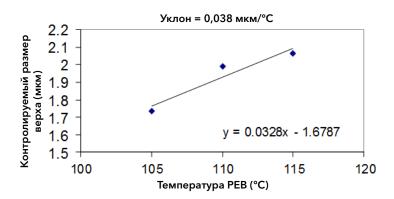
Термообработка после экспонирования 105 °C / 60 с

Размер верха: 1,734 Низ: 0,726 мкм

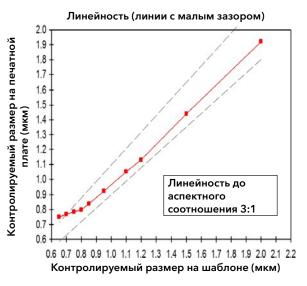

,

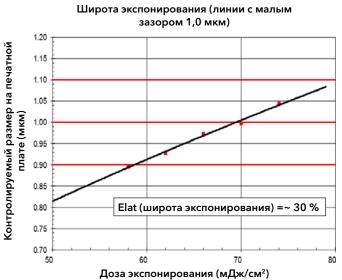

Термообработка после экспонирования **110 °C** / 60 с


Верх: 1,992 мкм Низ: 1,439 мкм

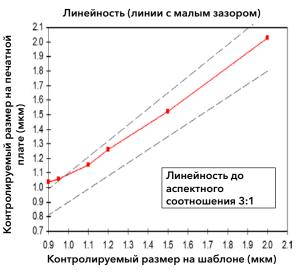

Термообработка после экспонирования 115 °C / 60 с

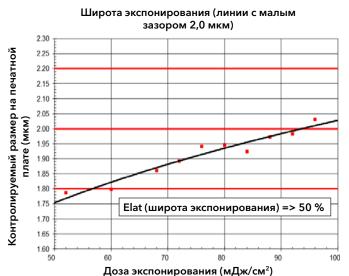
Верх: 2,062 мкм Низ: 1,687 мкм





Пример технологических окон на кремниевой подложке (FT = 2,0 мкм и 3,5 мкм)





Покрытие: AZ nLOF 2020 при FT = 2,0 мкм

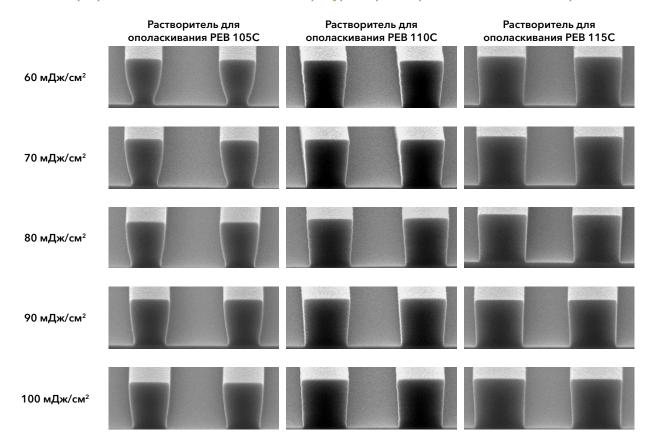
Сушка: 110 °С / 60 с

Экспонирование: Степпер Nikon, 0,54 NA
Термообработка после экспонирования: 110 °C / 60 с
Проявление: AZ 300MIF, 60 с, проявление под слоем жидкости

Покрытие: AZ nLOF 2020 при FT = 3,5 мкм

Сушка: 110°С / 60 с

Экспонирование: Степпер Nikon, 0,54 NA Термообработка после экспонирования: 110 °C / 60 с Проявление: AZ 300MIF, 120 с, проявление под слоем жидкости



Пример настройки профиля с помощью изменения термообработки после экспонирования и дозы экспонирования

Этап процесса	Параметры
Праймер	ГМДС 140 °C / 60 c (пар)
Покрытие	Пленка AZ nLOF 2020 (33 сП) толщиной 2,0 мкм на кремниевой подложке без покрытия
Сушка	110°C, 60 секунд, прямой контакт, горячая плита
Экспонирование	i-линия, варьируемая доза, степпер Nikon (0,54 NA)
Термообработка после экспонирования	Разная, как указано
Проявление	AZ 300MIF, 2 x 60 секунд, ванночки

Реакция профиля на изменение дозы и температуры термообработки после экспонирования

Технологические замечания

Подготовка подложки

Подложки должны быть чистыми, сухими и без органических остатков. Для оксидообразующих подложек (Si и т. д.) перед нанесением покрытия AZ nLOF 2000 следует использовать ГМДС-праймер. Свяжитесь с представителем по продукции AZ для получения подробной информации о предварительной обработке ГМДС.

Сушка

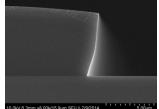
Время и температура сушки зависят от сферы применения. Для обеспечения оптимальной топологии и стабильных рабочих характеристик литографии и адгезии рекомендуется оптимизация процесса. Температура сушки для AZ nLOF 2000 должна находиться в диапазоне 100-110 °C. Для оптимальных рабочих характеристик необходимо минимизировать задержки между сушкой и экспонированием.

Экспонирование

AZ nLOF 2000 требует энергии экспонирования при длине волны 365 нм.

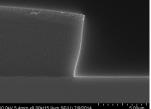
Термообработка после экспонирования

Термообработка после экспонирования требуется для правильной визуализации AZ nLOF 2000. Время и температура термообработки после экспонирования зависят от сферы применения. Как правило, температура термообработки после экспонирования должна находиться в диапазоне 100-115 °C. Как и у любого химически усиленного фоторезиста, контролируемый размер nLOF 2000 демонстрирует некоторую зависимость от температуры термообработки после экспонирования (обычно < 0,04 мкм/°C).

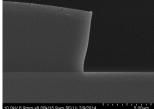

Проявление

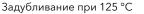
Фоторезисты серии AZ nLOF 2000 совместимы со стандартными отраслевыми ТМАГ-проявителями 0,26N (2,38 %). Рекомендуется AZ 300MIF.

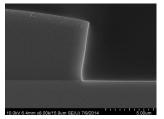
Задубливание


Задубливание (термообработка после проявления) улучшает адгезию при мокром травлении или гальваническом осаждении и повышает стабильность топологии при сухом травлении или использовании камер осаждения. Продукты AZ nLOF чрезвычайно термически стабильны и могут задубливаться при температурах до 150 °C.

Стабильность при задубливании больших площадок AZ nLOF 2070 (толщина пленки 7,0 мкм)




Задубливание при 115 °C



Задубливание при 120 °C

Задубливание при 130 °C

Снятие

Резисты серии AZ nLOF 2000 совместимы со стандартными промышленными снимателями на основе растворителей. Рекомендуется сниматель AZ 400T или AZ Remover 770.

Совместимые материалы

Резисты серии AZ nLOF 2000 совместимы со всем имеющимся в продаже литографическим оборудованием. Совместимые материалы конструкции включают стекло, кварц, ПТФЭ, ПФА, нержавеющую сталь, ПЭНД, полипропилен и керамику. Фоторезисты серии AZ nLOF 2000 не рекомендуется использовать на медных подложках.

Хранение

Материалы серии AZ nLOF 2000 – горючие жидкости. Их следует хранить в герметичных оригинальных контейнерах в хорошо проветриваемом сухом помещении вдали от источников тепла, света, окислителей, восстановителей и источников возгорания. Рекомендуемая температура хранения 30-55 °F.

Обращение/утилизация

Материалы серии AZ nLOF 2000 содержат ПГМЭА (1-метокси-2-пропанолацетат). Для получения актуальной информации о безопасном обращении и надлежащей утилизации см. текущую версию паспорта безопасности материала и местные нормативные документы. Надевайте устойчивые к растворителям перчатки, спецодежду и средства защиты глаз/лица. AZ nLOF 2000 совместим с дренажными линиями, используемыми для аналогичных материалов на основе органических растворителей.

Серия АZ® nLOF™ 2000

Негативный фоторезист для однослойной взрывной литографии

7/7

ООО «Остек-Интегра»