

Лист технической информации

Indium6.4R

Водосмываемая, не содержащая свинец (Pb), паяльная паста для сплавов SnPb

Введение

Indium6.4R – это универсальная паяльная паста с водосмываемым флюсом, предназначенная для оплавления в воздушной или азотной атмосфере. Она используется в припоях с Sn/Pb и без свинца (Pb) с исключительным «окном» процесса оплавления. Эта паяльная паста обеспечивает исключительную производительность трафаретной печати, длительный срок службы трафарета и отличную реакцию на паузу.

Indium6.4R демонстрирует превосходное смачивание при различных финишных покрытиях, а также наилучшие характеристики с наименьшим количеством пустот, уменьшенным размером наибольших пустот и в целом минимальным образованием таковых для BGA, CSP и BTC (QFN, DPAK, LGA и т. д.).

Особенности

- Водосмываемый флюс для паяльной пасты с наименьшим уровнем образования пустот:
 - Сокращенное количество больших пустот
 - Меньшее число пустот
 - Сведенное к минимуму образование пустот в целом
 - Для компонентов BGA, CSP и компонентов BTC, таких как OFN
- Исключительное «окно» процесса печати:
 - Превосходная реакция на паузу
 - Продолжительный срок жизни на трафарете (> 8 часов в контролируемой среде)
 - Единообразная печать в широком диапазоне скоростей
- Широкое «окно» процесса оплавления для профилирования
- Превосходное смачивание на различных финишных покрытиях
- Поддержание липкости с течением времени
- Подходит для эвтектических сплавов SnPb, а также сплавов, не содержащих свинец (Pb)

Сплавы

Корпорация Indium производит сферический порошок с низким содержанием окислов, состоящий из эвтектических SnPb и SnPbAg, а также многих сплавов, не содержащих свинец (Pb), для сборки печатных плат в соответствии с промышленным стандартом размера частиц Тип 3 и Тип 4 (J-STD-006). Другие нестандартные размеры частиц доступны по запросу. Содержание металла — это весовой процент порошка припоя в паяльной пасте и зависит от типа порошка, сплава и применения. Стандартные предложения продукции подробно описаны в следующей таблице.

Стандартные технические характеристики продукта

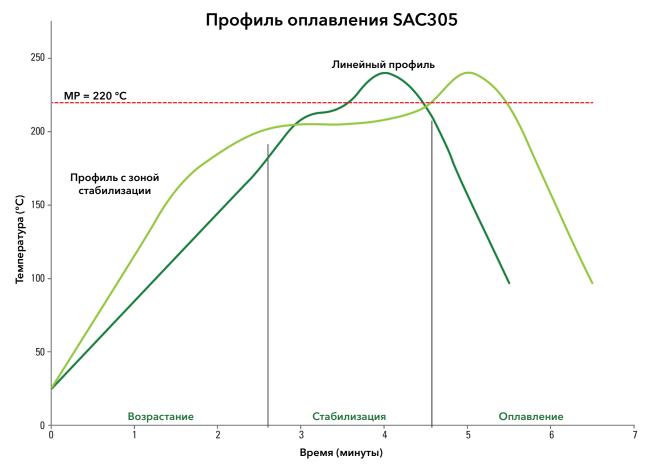
Группа сплавов	Indalloy® #	Общее название	Состав	T4 (%)	T3 (%)
SnPb близкие к эвтектическому	106	Sn63	63Sn/37Pb		
	-	Sn62	62Sn/36Pb/2Ag	89,5	89,75
	100	-	62,6Sn/37Pb/0,4Ag		
	241	SAC387	95,5Sn/3,8Ag/0,7Cu		
Бессвинцовые сплавы	256	SAC305	96,5Sn/3,0Ag/0,5Cu	00.5	00.75
	258	SAC105	98,5Sn/1,0Ag/0,5Cu	88,5	88,75
	268	SACm®	98,5Sn/0,5Ag/1,0Cu+Mn		

Испытания и результаты по стандартам Bellcore и J-STD

J-STD-004 (IPC-TM-650)

Испытание	Результат
Тип флюса (в соответствии с J-STD-004A)	ORH1
Поверхностное сопротивление изоляции	Удовлетворительно
Проверка смачиваемости	Удовлетворительно

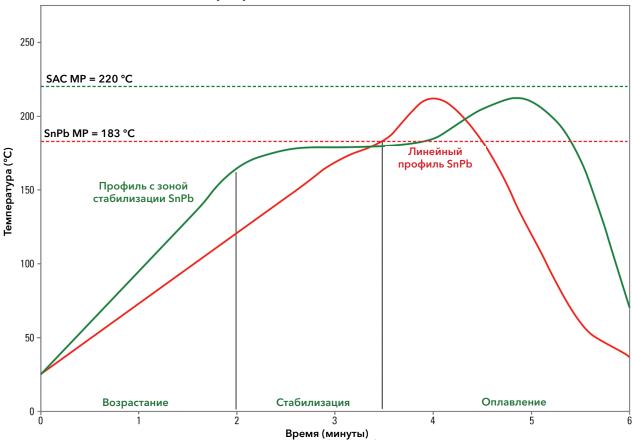
Вся информация предназначена только для справки. Не используется в качестве технических характеристик поступающей продукции.


J-STD-005 (IPC-TM-650)

Испытание	Результат
Типичная вязкость паяльной пасты Malcolm (10 об/мин) (SAC305 T4 88,5 %мл))	1600 Пз
Испытание на осадку	Удовлетворительно
Испытание на шарики припоя	Удовлетворительно
Типичная клейкость	50 г
Проверка смачиваемости	Удовлетворительно

ООО «Остек-Интегра»

Начните с линейного профиля, затем при необходимости перейдите к дополнительному профилю с зоной стабилизации.


	Параметры SAC305		V	
Детали профиля оплавления	Рекомендовано Приемлемо		Комментарии	
Предварительный нагрев (Средняя температура окружающей среды до пика) – не то же самое, что максимальный нарастающий фронт	0,5-1,0 °C/c	0,5-2,5 °C/c	Чтобы свести к минимуму образование шариков припоя, наплывов, горячей осадки	
Профиль зоны стабилизации (дополнительно)	30-90 секунд 160-180 °C	30-120 секунд 150-200°C	Может минимизировать образование пустот в BGA/CSP	
Время выше точки ликвидуса	45-60 секунд	30-100 секунд	Необходимо для хорошего	
Пиковая температура	235-250 °C	232-270 °C	смачивания / надежного паяного соединения	
Скорость постепенного охлаждения	2-6 °C/c	0,5-6,0 °C/c	Быстрое охлаждение способствует образованию мелкозернистой структуры	
Атмосфера оплавления	Воздух или ${\sf N_2}$		${\sf N}_{\sf 2}$, как правило, предпочтительнее	

Примечание. Все параметры указаны только для справки. Могут потребоваться изменения в соответствии с процессом и конструкцией.

Профиль оплавления SnPb

Начните с линейного профиля, затем при необходимости перейдите к дополнительному профилю с зоной стабилизации.

	Параметры сплава SnPb		V
Детали профиля оплавления	Рекомендовано	Приемлемо	Комментарии
Предварительный нагрев (Средняя температура окружающей среды до пика) – не то же самое, что максимальный нарастающий фронт	0,5-1,0 °C/c	0,5-2,5 °C/c	Чтобы свести к минимуму образование шариков припоя, наплывов, горячей осадки
Профиль зоны стабилизации (дополнительно)	30-90 секунд 140-150 °C	30-120 секунд 130-170°C	Может минимизировать образование пустот в BGA/CSP
Время выше точки ликвидуса Пиковая температура	45-60 секунд 205-215 °C	30-100 секунд 205-235 °C	Необходимо для хорошего смачивания / надежного паяного соединения
Скорость постепенного охлаждения	2-6 °C/c	0,5-6,0 °C/c	Быстрое охлаждение способствует образованию мелкозернистой структуры
Атмосфера оплавления	Воздух или $N_{\scriptscriptstyle 2}$		$N_{\scriptscriptstyle 2^\prime}$ как правило, предпочтительнее

Примечание. Все параметры указаны только для справки. Могут потребоваться изменения в соответствии с процессом и конструкцией.

inaiumo.4r

Печать

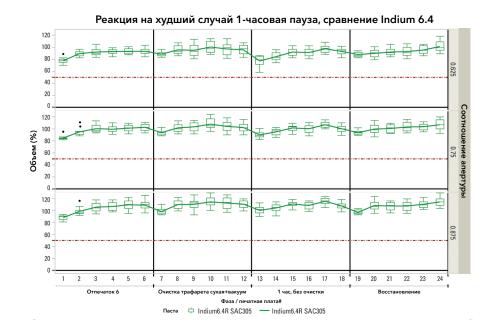
Конструкция трафарета

Трафареты с гальванической и лазерной резкой / электрополировкой обеспечивают наилучшие характеристики печати среди прочих типов трафаретов. Дизайн апертуры трафарета является важным шагом в оптимизации процесса печати. Ниже приведено несколько общих рекомендаций:

- Дискретные компоненты Уменьшение апертуры трафарета на 10-20 % значительно уменьшило или устранило появление шариков припоя. Конструкция «вырез домиком» является распространенным методом достижения такого сокращения.
- Компоненты с мелким шагом Для апертуры с шагом 20 Мил и менее рекомендуется уменьшить площадь поверхности. Такое уменьшение поможет свести к минимуму образование шариков и перемычек припоя, которые могут привести к электрическим замыканиям. Необходимая величина уменьшения зависит от процесса (обычно 5-15 %).
- Для оптимальной эффективности печати и отделения паяльной пасты из апертуры трафарета следует соблюдать стандартные соотношения апертуры и сторон.

Диаграмма соотношения площадей (Мил)

Размер апертуры (мкм)	Толщина трафарета 4			
177,80	0,438			
203,20	0,500			
228,60	0,563			
254,00	0,625			
279,40	0,688			
304,80	0,750			
330,20	0,813			
355,60	0,875			
	(MKM) 177,80 203,20 228,60 254,00 279,40 304,80 330,20			


Работа принтера

Ниже приведены общие рекомендации по оптимизации трафаретного принтера для **Indium6.4R.** В зависимости от конкретных требований к процессу могут потребоваться корректировки.

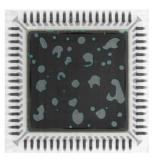
Размер валика паяльной пасты	20-25 мм в диаметре
Скорость печати	25-100 мм/с
Давление ракеля	0,018-0,027 кг/мм длины лезвия
Очистка трафарета с нижней стороны	Один раз каждые 10-25 отпечатков или по мере необходимости (рекомендуется сухое протирание)
Срок жизни паяльной пасты на трафарете	>8 часов (при относительной влажности 40-60 % и 22-28 °C)

8-часовая процедура печати

- Оптимизация скорости печати / давления при 50 и 100 мм/с (шесть печатных плат на каждой скорости после очистки трафарета сухая+вакуум)
- Далее со скоростью 100 мм/с и оптимальным низким давлением
- Шесть печатных плат печатаются каждые 30 минут (очистка трафарета сухая+вакуум перед паузой)
- Через 4 часа, печать 6, очистка трафарета сухая+вакуум, печать 6, чтобы показать влияние простого вытирания
- 1-часовая пауза после очистки трафарета сухая+вакуум (лучший момент для паузы)
- 1-часовая пауза без предварительной очистки трафарета сухая+вакуум (худший момент для паузы)
- 2-часовая пауза после очистки трафарета сухая+вакуум (долгая пауза)
- Фактическая продолжительность: 8 часов или более, примерно 100 печатных плат

Indium6.4R

Образование пустот


Следующие данные были собраны с помощью QFN по испытанию носителя. Более подробную информацию можно найти в таблице. Результаты как SAC305, так и Sn63 предоставляются с использованием трафарета размером 4 Мил. Результаты по образованию пустот сильно зависят от многих факторов, таких как профиль оплавления, химический состав флюса, сплав, финишное покрытие и конструкция печатной платы, а также компоненты, поэтому Ваши результаты могут отличаться.

Образование пустот QFN

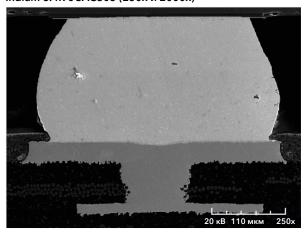
Сплав	Профиль	Среднее	Стандартное отклонение
SAC305	5 минут	19,48	3,65
SAC305	3 минуты	22,15	2,45
Sn63	5 минут	29,02	1,66
Sn63	3 минуты	23,38	3,46

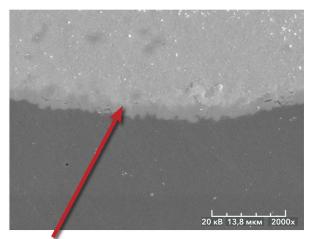
- Две платы, 12 компонентов, измеренных в зависимости от состояния
- Худший момент для испытания на образование пустот QFN
- Печатная паста на всем квадрате термолиста
- Профили: Возрастание до 245 °C пик для SAC305 Возрастание до 215 °C пик для Sn63
- Время до достижения пика: 3 минуты и 5 минут

SAC305 T4

Sn63 T4

Совместимые продукты


■ Флюс для ремонта: TACFlux® 025-NP


■ Флюс-аппликатор: FP-1095-NF

■ Трубчатый припой: CW-301

■ Флюс для пайки волной: 1095-NF

Indium 6.4R c SAC305 (250x и 2000x)

Слой ІМС

Размещение

Высокое значение липкости **Indium6.4R** обеспечивает стабильную удерживающую способность компонентов. Это позволяет выполнять быструю операцию размещения компонентов, включая использование высоких компонентов. Липкость остается достаточной в течение более 8 часов в широком диапазоне влажности.

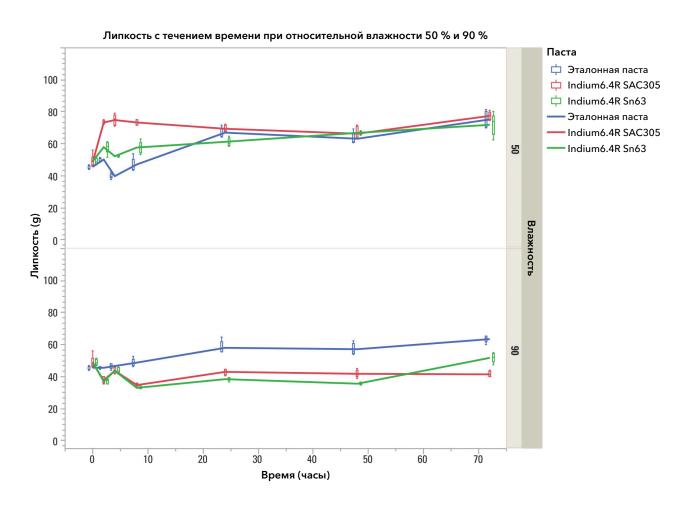
Хранение и порядок работы

Хранение в холодильнике продлит срок годности паяльной пасты. Срок годности Indium6.4R составляет 6 месяцев при хранении при температуре <10 °C. При хранении паяльной пасты, содержащейся в шприцах и картриджах, упаковки следует хранить наконечником вниз.

Паяльной пасте следует дать возможность достичь рабочей температуры окружающей среды перед использованием и перед открытием банки. В идеале рабочая среда должна иметь температуру 23-28 °С и относительную влажность 40-60 %. Как правило, пасту следует вынимать из холодильника хотя бы за 2 часа до использования. Фактическое время достижения термического равновесия будет варьироваться в зависимости от объема упаковки. Перед использованием следует проверить температуру пасты. Банки и картриджи должны быть помечены датой и временем открытия.

Упаковка

Стандартная упаковка для трафаретной печати включает банки с широким горлышком емкостью 500 г и картриджи емкостью 600 г. Для дозирования доступны шприцы объемом 30 куб. см. По запросу могут быть предоставлены другие варианты упаковки.


Отмывка

Остаток флюса Indium6.4R можно очищать в срок до 72 часов после оплавления и лучше всего очищать с помощью деионизованной воды с давлением распыления не менее 40 фунтов/кв. дюйм и температурой не менее 40 °C. Эти параметры зависят от сложности конструкции печатной платы и эффективности чистящего средства. Электрические испытания должны выполняться после удаления остатков флюса.

Отмывку трафарета лучше всего выполнять с помощью автоматизированной системы отмывки трафаретов как для их непосредственной отмывки, так и для отмывки плат с ошибками печати, чтобы не допустить появления частиц припоя. Большинство коммерчески доступных средств для отмывки трафаретов, включая изопропиловый спирт (IPA), справляются с данной задачей.

Паспорта безопасности

Паспорт безопасности для данного продукта можно найти в Интернете по адресу http://www.indium.com/sds

Indium6.4R Водосмываемая, не содержащая свинец (Pb), паяльная паста для сплавов SnPb

6/6